Theoretical study on the addition reaction between propadienylidene and methyleneimine
نویسندگان
چکیده
Abstract: The reaction mechanism between propadienylidene and methyleneimine was systematically investigated employing the second-order Møller–Plesset perturbation theory (MP2) method with the 6 – 31 + G* basis set. Geometry optimization, vibrational analysis, and energy property of the involved stationary points on the potential energy surface were calculated. The energies of the different species were corrected by single point energy calculations at the CCSD (T) // MP2 / 6 – 31 + G* level. From the surface energy profile, one important initial intermediate characterized by a 3-membered ring structure was located via a transition state firstly. After that, 3 different products possessing 3and 4-membered ring characters were obtained through corresponding reaction pathways. In the first reaction pathway (1), a 3-membered ring alkyne compound was obtained. A 4-membered ring conjugated diene compound was produced in the other 2 reaction pathways, pathways (2R) and (2L). The energy barrier of the rate-determining step of pathway (1) is higher than those of the pathways (2R) and (2L), where the ultimate products of pathways (2R) and (2L) are more stable than that of pathway (1). Therefore, the dominating product of the addition reaction between propadienylidene and methyleneimine should be the 4-membered ring conjugated diene compound.
منابع مشابه
Theoretical Study of Addition Reaction of Carbene and Zigzag Single-walled Carbon Nanotube
The reaction mechanism between (H2C) and (7, 0), zigzag single-walled carbon nanotubes(ZSWCNTs) on two different orientation of C-C have been studied by semi empirical AM!method. The activation barriers of (H2C) adding to (7, 0) ZSWCNT are computed and compared.The effects of diameters of zigzag SWCNT on their binding energies were studied
متن کاملImpact of Lewis acid catalyst on the regioselectivity and kinetics of 1,3-dipolar cycloaddition reaction of azidobenzene with acrolein: a theoretical study using DFT
In the present work, impact of Lewis acid (LA) catalysts BF3, BCl3, and BBr3 on the kinetics andregioselectivity of 1,3-dipolar cycloaddition (1,3-DC) reaction between azidobenzene and acroleinwas theoretically studied using B3LYP/6-31G* level. Our results indicate while the uncatalyzed 1,3-DC reaction under investigation takes place via a non-polar, non-regioselective, and lowasynchronous proc...
متن کاملOn the photodissociation of propadienylidene, l-C3H2.
We investigate the photochemistry and photodissociation dynamics of the linear C3H2 isomer propadienylidene by two-colour photofragment Doppler spectroscopy at excitation wavelengths between 260 and 230 nm, corresponding to excitation into the C1 A1 state. Propadienylidene is generated by pyrolysis from IC3H2Br. Almost complete conversion of the precursor can only be achieved at high pyrolysis ...
متن کاملTheoretical study on the mechanism of stable phosphorus ylides derived from 5-aminoindazole in the presence of different dialkyl acetyelenedicarboxylates
In the recent work, the reaction mechanism between triphenylphosphine 1, dialkyl acetylenedicarboxylates 2 in the presence of NH-acid, such as 5-aminoindazole 3 were investigated theoretically. Quantum mechanical studies were performed for evaluation of potential energy surfaces of all structures participated in the reaction mechanism both in gas phase and in dichloromethane. The first step of ...
متن کاملExperimental and Theoretical Study of Stable Phosphorus Ylides Derived from 5-Nitroindazole in the Presence of Different Acetyelenic Esters: Furthure Insight into the Reaction Mechanism
The kinetics of the reactions between triphenylphosphine 1 and dialkyl acetylenedicarboxylates 2, in the presence of a NH-acid such as 5-nitroindazole 3,were studied. Corresponding kinetic parameters to all reactions were evaluated, with the second order rate constant (k) values calculated. Effects of solvent, temperature, and reactant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013